11.3.2 多边形的内角和
通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题.
阅读教材P21~23,完成预习内容.
问题1:你知道三角形的内角和是多少度吗?
解:三角形的内角和等于180°.
问题2:你知道任意一个四边形的内角和是多少度吗?
学生展示探究成果
方法1:
分成2个三角形 180°×2=360°
方法2:
分割成4个三角形 180°×4-360°=360°
方法3:
分割成3个三角形 180°×3-180°=360°
从一个顶点出发和各顶点相连,把四边形的问题转化为三角形的问题.
问题3:你知道五边形的内角和是多少度吗?
问题4:你知道六边形、七边形的内角和分别是多少度吗?
知识探究
列表探索n边形的内角和公式:____________.
自学反馈
1.十二边形的内角和是________.
2.一个多边形当边数增加1时,它的内角和增加________.
3.一个多边形的内角和是720°,则此多边形共有________个内角.
4.如果一个多边形的内角和是1 440°,那么这是________边形.
活动1 小组讨论
问题1:小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?
求六边形外角和等于多少度,用六个平角减去六边形的内角和即可得出.
问题2:n边形外角和等于多少度?
探索发现:n边形外角和等于360°.
活动2 跟踪训练
1.(1)八边形的内角和等于________度;
(2)九边形的内角和等于________度;
(3)十边形的内角和等于________度.
2.一个多边形的内角和等于1 800°,这个多边形是________边形.
3.七边形的外角和为________.
4.正多边形的一个外角等于20°,则这个正多边形的边数是________.
5.内角和与外角和相等的多边形是________边形.
活动3 课堂小结
通过三角形向四边形、五边形…的转化,体会转化思想在几何中的运用,体会从特殊到一般的认识问题的方法.
【预习导学】
知识探究
(n-2)×180°
自学反馈
1.1 800° 2.180° 3.六 4.十
【合作探究】
活动2 跟踪训练
1.(1)1 080 (2)1 260 (3)1 440 2.十二 3.360° 4.18 5.四