文章来 源
365娱乐场下载 w w
w.5 Y K J.Com 第1章 反比例函数
1.1 反比例函数
1.理解并掌握反比例函数的概念,能判断一个给定的函数是否为反比例函数.(重点)
2.能根据实际问题中的条件确定反比例函数的表达式,体会函数模型的思想.(重点)
阅读教材P2~3,完成下列内容:
(一)知识探究
形如y=kx(k是常数,________)的函数称为________,其中x是________,y是________.自变量x的取值范围是不等于0的一切实数.
(二)自学反馈
下列函数中,属于反比例函数的是________;每一个反比例函数的比例系数是多少?
①y=2x+1;②y=2x2;③y=15x;④y=-23x;⑤xy=3;⑥2y=x;⑦xy=-1.
判断是不是反比例函数,一定要根据反比例函数的定义,牢记反比例函数的三种形式.
活动1 小组讨论
例 如图,已知菱形ABCD的面积为180,设它的两条对角线AC,BD的长分别为x,y.写出变量y与x之间的函数表达式,并指出它是什么函数.
解:∵菱形的面积等于两条对角线长乘积的一半,
∴S菱形=12xy=180.
∴xy=360(定值),即y与x成反比例关系.
∴y=360x.
因此,当菱形的面积一定时,它的一条对角线长y是另一条对角线长x的反比例函数.
活动2 跟踪训练
1.下面的函数是反比例函数的是( )
A.y=3x+1 B.y=x2+2x
C.y=x2 D.y=3x
2.在函数y=3x中,自变量x的取值范围是( )
A.x≠0 B.x>0
C.x<0 D.一切实数
3.若函数y=kxk-2是反比例函数,则k=________.
4.已知函数y=-6x,当x=-2时,y的值是________.
5.列出下列问题中的函数表达式,并指出它们是什么函数.
(1)某农场的粮食总产量为1 500 t,则该农场人数y(人)与平均每人占有粮食x(t)的函数表达式;
(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数表达式;
(3)小明完成100 m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数表达式.
活动3 课堂小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=kx(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数?
【预习导学】
知识探究
k≠0 反比例函数 自变量 因变量
自学反馈
③④⑤⑦ ③y=15x中k=15;④y=-23x中k=-23;⑤xy=3中k=3;⑦xy=-1中k=-1.
【合作探究】
活动2 跟踪训练
1.D 2.A 3.1 4.3 5.(1)y=1 500x,反比例函数. (2)y=4.75x,正比例函数. (3)t=100v,反比例函数.
文章来 源
365娱乐场下载 w w
w.5 Y K J.Com